Understanding complex chiral plasmonics.

نویسندگان

  • Xiaoyang Duan
  • Song Yue
  • Na Liu
چکیده

Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the 'host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant and simple analytical model, which can describe, predict, and comprehend the chiroptical spectra in detail. Our study will shed light on designing well-controlled chiral-achiral coupling platforms for reliable chiral sensing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods

An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...

متن کامل

Chiral Plasmonics Using Twisting along Cellulose Nanocrystals as a Template for Gold Nanoparticles.

The right-handed twist along aqueous dispersed cellulose nanocrystals allows right-handed chiral plasmonics upon electrostatic binding of gold nanoparticles in dilute environment, through tuning the particle sizes and concentrations. Simulations using nanoparticle coordinates from cryo-electron tomography confirm the experimental results. The finding suggests generalization for other chiral and...

متن کامل

Chiral plasmonics

We present a comprehensive overview of chirality and its optical manifestation in plasmonic nanosystems and nanostructures. We discuss top-down fabricated structures that range from solid metallic nanostructures to groupings of metallic nanoparticles arranged in three dimensions. We also present the large variety of bottom-up synthesized structures. Using DNA, peptides, or other scaffolds, comp...

متن کامل

Chiral plasmonics of self-assembled nanorod dimers

Chiral nanoscale photonic systems typically follow either tetrahedral or helical geometries that require four or more different constituent nanoparticles. Smaller number of particles and different chiral geometries taking advantage of the self-organization capabilities of nanomaterials will advance understanding of chiral plasmonic effects, facilitate development of their theory, and stimulate ...

متن کامل

Enantioselective Synthesis of Modafinil Drug using Chiral Complex of Titanium and Diethyltartarate

Modafinil (Diphenyl methyl Sulfinyl acetamid) is used clinically in the treatment of narcolepsy and sleeping disorders. The synthesis of R-modafinil, have started with the reaction of benzhydrol and thioglycolic acid in trifluoroacetic acid to afford benzhydryl sulfanyl acetic acid. The reaction of acid with thionyl chloride in benzene followed by treatment with ammonium hydroxide gave acetamid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 41  شماره 

صفحات  -

تاریخ انتشار 2015